Complete Characterization of Generalized Bent and 2k-Bent Boolean Functions

نویسندگان

  • Chunming Tang
  • Can Xiang
  • Yanfeng Qi
  • Keqin Feng
چکیده

In this paper we investigate properties of generalized bent Boolean functions and 2-bent (i.e., negabent, octabent, hexadecabent, et al.) Boolean functions in a uniform framework. We generalize the work of Stǎnicǎ et al., present necessary and sufficient conditions for generalized bent Boolean functions and 2-bent Boolean functions in terms of classical bent functions, and completely characterize these functions in a combinatorial form. The result of this paper further shows that all generalized bent Boolean functions are regular. Index Terms Boolean functions, Walsh-Hadamard transforms, 2-bent functions, generalized bent functions, cyclotomic fields

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Primary Constructions of Vectorial Boolean Bent Functions∗

Vectorial Boolean bent functions, which possess the maximal nonlinearity and the minimum differential uniformity, contribute to optimum resistance against linear cryptanalysis and differential cryptanalysis for the cryptographic algorithms that adopt them as nonlinear components. This paper is devoted to the new primary constructions of vectorial Boolean bent functions, including four types: ve...

متن کامل

On generalized semi-bent (and partially bent) Boolean functions

In this paper, we obtain a characterization of generalized Boolean functions based on spectral analysis. We investigate a relationship between the Walsh-Hadamard spectrum and σ f , the sum-of-squares-modulus indicator (SSMI) of the generalized Boolean function. It is demonstrated that σ f = 22n+s for every s-plateaued generalized Boolean function in n variables. Two classes of generalized semi-...

متن کامل

Constructions of Generalized Bent Boolean Functions on Odd Number of Variables

In this paper, we investigate the constructions of generalized bent Boolean functions defined on with values in Z4. We first present a construction of generalized bent Boolean functions defined on with values in Z4. The main technique is to utilize bent functions to derive generalized bent functions on odd number of variables. In addition, by using Boolean permutations, we provide a specific me...

متن کامل

On cross-correlation spectrum of generalized bent functions in generalized Maiorana-McFarland class

In this paper, we obtain the cross-correlation spectrum of generalized bent Boolean functions in a subclass of MaioranaMcFarland class (GMMF). An affine transformation which preserve the cross-correlation spectrum of two generalized Boolean functions, in absolute value is also presented. A construction of generalized bent Boolean functions in (n+ 2) variables from four generalized Boolean funct...

متن کامل

Secondary constructions on generalized bent functions

In this paper, we construct generalized bent Boolean functions in n + 2 variables from 4 generalized Boolean functions in n variables. We also show that the direct sum of two generalized bent Boolean functions is generalized bent. Finally, we identify a set of affine functions in which every function is generalized bent.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016